R&D Breakthroughs in Biomaterials, Packaging and Media

"We have good experiences working with VTT from idea generation to technology upscaling." Ari Kiviranta, Research Director, Metsä Board


Universal shear rheology behaviour of MCF suspensions

Rheology of MFC suspensions showed similar behaviour with very different particle sizes.

The shear rheology of two mechanically manufactured microfibrillated cellulose (MFC) suspensions was studied in a consistency range of 0.2–2.0% with a pipe rheometer combined with ultrasound velocity profiling. The MFC suspensions behaved at all consistencies as shear thinning power law fluids. Despite their significantly different particle size, the viscous behavior of the suspensions was quantitatively similar. For both suspensions, the dependence of yield stress and the consistency index on consistency was a power law with an exponent of 2.4, similar to some pulp suspensions. The dependence of flow index on consistency was also a power law, with an exponent of − 0.36. The slip flow was very strong for both MFCs and contributed up to 95% to the flow rate. When wall shear stress exceeded two times the yield stress, slip flow caused drag reduction with consistencies higher than 0.8%. When inspecting the slip velocities of both suspensions as a function of wall shear stress scaled with the yield stress, a good data collapse was obtained. The observed similarities in the shear rheology of both the MFC suspensions and the similar behavior of some pulp fiber suspensions suggests that the shear rheology of MFC suspensions might be more universal than has previously been realized.

Figure: Light microscopy image of microfibrillated cellulose.

More information in the article: https://link.springer.com/article/10.1007%2Fs10570-019-02784-4

For more information, please contact:
Antti Koponen

Related technologies